Press "Enter" to skip to content

Category: cycling

Fix for Leaky Valves on Single Wall Fatbike Rims

If you have a single wall fatbike rim (eg: SunRingle Mulefüt, PUB Carbon, HED., Specialized Fatboy OE, DT Swiss BR 2250 Classic, etc), you should be using a spacer between the rim wall and valve nut when setting the wheels up tubeless. If not, it’s likely you’ll eventually have problems with leaks around the valves. And these sure aren’t fun when they crop up on a cold day out in the woods.

The diagram above shows why: Tubeless valves don’t work well with single wall rims: the base of the valve ends up poking through the rim wall, so when the nut is tightened down, instead of sealing the gasket against the wall, it bottoms out leaving the gasket loose. Sometimes there’s a visible gap, other times it’s just looser than it should be, and it will eventually leak.

Sometimes it’s possible that sealant will build up in the gap and keep the leak at bay for a while, but as the valve gets bumped, the weather turns cold and things contract and harden, leaks will tend to appear.

So what’s the Fix? Fit a spacer between the rim and Presta nut, then tighten up everything snugly. Doing this ensures the gasket can squeeze through the rim, the nut doesn’t bottom out on the base, and everything gets good and tight. (Protip: Press on the valve gasket from the inside of the rim with your thumb while tightening the nut with your fingers. Then when you release pressure on the gasket the nut will end up tighter than you can do with just your fingers. Reversing this process allows the valve to be removed without tools.)

I’ve used a variety of spacers for this, but the most readily available is McMaster-Carr part 90176A155: Nylon Unthreaded Spacers, 1/2″ OD, 1/4″ Long, Black with 25 pieces available for ~$5 (plus shipping). Lowes, Ace, Home Depot, and Menards will all typically have similar spaces in their small-parts sections.

There’s also the Problem Solvers Super P-Nuts which are a replacement Presta nut that has a flared, stepped base, but at ~$7.99 for two I’ll recommend using spacers. (EDIT: Looks like it’s $15.99 for two brass valves and two Super P-Nuts. That’s much better, as a pair of valves typically retails for close to that.)

Even on valves with flat bases this is often a problem because single wall rims tend to be thinner than the unthreaded base of the valves, and this pokes through the rim wall and the nut bottoms out on it. Many of these valves come with O rings to be fitted on the outside of the rim as protection, but this doesn’t solve the issue either as the O ring isn’t thick enough to serve as a spacer.

See the photos below for examples of the issue and photos of spacers used to solve the problem.

(Note: I wrote about this years ago as SUNringlé MüleFüt Leaky Valve Stem Fix, but it was time for an updated post with more details and fresh photos.)

Comments closed

Ride Dirt Trails, Not Mud Trails: Reposted

Turning the clock back to 2012, when volunteering with CRAMBA I worked with my friend Kristi and developed the Ride Dirt Trails, Not Mud Trails signage. Originally hosted on the CRAMBA page (Internet Archive) this has fallen prey to link rot, so I’m re-posting / re-hosting it here.

Back when this was released we very intentionally made it available it under the CC BY-SA 3.0 license along with an Adobe In Design template so anyone else could reuse the work and help spread the message to avoid trails when they are wet enough to be damaged via use.

Since then I’ve seen some variant of this used all across the country, from SE Michigan’s more mult-user friendly Muddy Day? Don’t Play! take to just-logo-swapped signage in Arkansas and Missouri Ohio to the text reused on signs at Knoxville’s flagship Baker Creek Preserve.

I love seeing this reuse because the whole point of the open licensing was to make it so others could build on our work. And here we are, twelve years later, and it’s still going strong.

All files for this can be found here:

Comments closed

New XC Bike: Pivot Mach 4 SL v3

I never really thought I’d have a fast XC bike again, but, I was wrong. And I’m glad. And impressed at just how capable a “modern” XC race bike is.

For almost three years I’ve had the amazing Pivot Trail 429 (v3) as my main mountain bike. It’s an incredibly capable trail bike that I’ve ridden all over the midwest, from Arkansas to Copper Harbor to Tennessee, and it’s been wonderful. But, being a longer, slacker bike the one place I wasn’t super-keen on it was our standard Lower Peninsula classic XC trails, especially those with fast, tight, twisty sections. It’s fun, but just not ideal for that stuff and felt like I had to dump the front end into the really tight corners.

In late 2022 I unexpectedly found myself buying a used-but-like-new super-well-equipped Pivot LES hardtail from a buddy (price I couldn’t pass up) which once again gave me a taste of a proper XC bike. While I used it for lots of local rides, and both Ore to Shore, and Lumberjack 100 in 2023, it never quite clicked. I had an absolute blast riding it, especially on the smooth sandy trails in the northern LP, but maybe due to the lack of dropper or the 100mm fork or my weird body proportions, it was fun and fast but never quite felt like mine. I liked having it around, and it was fun, but I was routinely eyeing other XC bikes.

When Pivot announced the v3 of the Mach 4 SL in 2023 it looked really appealing, but I couldn’t justify it. I put thoughts of a new bike aside… Until now. After a lot of thinking and basically coinciding with my birthday, a brand new Pivot Mach 4 SL v3, Pro XT/XTR build with carbon wheels, in the eye-catching Seafoam Green, found it’s way home. (And away went the LES, passing on the good deal to a buddy who was looking for a superlight XC race bike.)

Unlike normal for me, the build is almost completely stock. It’s incredibly well equipped as shipped, so outside of contact points (saddle, grips) the only changes I made were for fit, swapping in a shorter crank and a lower-rise bar.

The bike shipped with a really nice Race Face Aeffect crankset and a 34t ring, but had 175mm arms. I’ve been riding 170mm cranks on the Trail 429 for years, rather liking it, and wanted the same on here. Pleasantly surprised to see the frame fitted with a Shimano bottom bracket, I was able to swap in an XT crankset with no extra work. After confirming with Pivot that the bike is spec’d with a 53mm chainline crank I ended up going with the 52mm FC-M8100-1 which Shimano spec’s for both Boost (148mm) and standard (142mm) rear ends. The other option was the Boost-only 55mm FC-M8120-1, but sticking with the narrower chainline improves big-cog performance, so it’s preferable if possible. The narrower FC-M8100-1 fits the Mach 4 SL v3 perfectly, with plenty of clearance around the ring and arms, works wonderfully, and was a great choice.

Shimano XT FC-M8100 crankset with 34t ring fits very nicely with plenty of clearance.

Chainring-wise I wanted to stay with a 34t, but being (weirdly) cheap I opted for the SLX-level SM-CRM75. It’s only ~10 grams more than the XT-level SM-CRM85 but can be found for around half the price ($33 vs. $59). Both have steel teeth and an aluminum carrier, and upgrading to the XT only gets an anodized spider (vs. painted) and carbon fiber (vs. glass fiber) non-load-bearing plastic bits. Thus, performance is effectively identical. Due to series colors the center spider is a little bit of a blueish grey and doesn’t match the other parts, but in the overall scheme of the bike it looks fine, and even the smallest amount of dust obscures the variance.

Where I didn’t go cheap was on the pedals… My go-to pedals are typically XT-level PD-M8100 (regular) or PD-M8120 (trail), but finding XTR PD-M9100 on sale at the price XTs would normally sell for I figured I’d give them a go. They are only marginally lighter (28g/pair), but have a smaller center that should clear dirt and debris better, and a slightly shorter stack height. But mostly, I liked how they looked, wanted to see how they felt, and wanted new pedals for a new bike. Thus far they seem good, and I don’t regret purchasing them.

Grip-wise I put aside the stock Pivot Phoenix Factory Lock-On Grips and fitted ESI Extra Chunky grips in black with generic BMX-ish screw-in bar plugs. The narrow bar plugs are only slightly larger than the bar diameter, meaning they don’t press on my hand when my hand sits at the outer edge of the bar. While the Pivot grips are excellent I prefer foam ESIs on my mountain bikes. Kristen really likes the Pivot grips, so these’ll end up set aside for her.

The stock saddle is a fairly narrow Pivot-branded WTB which just doesn’t work for me, so the 143mm-wide Specialized Power saddle (conveniently with titanium rails) from the LES is now on the Mach 4 SL.

The bike also originally shipped with a 760mm wide, 20mm rise, 5° upsweep, and 9° backsweep bar. I swapped this out for another Pivot-branded bar I’d bought from a friend earlier in the year. After cutting 5mm off of each end it’s now 750mm wide, 6mm of rise, no upsweep, and 9° of backsweep. This is in line with what I have on my trail bike and so far feels good, although I may go down to 740mm or maybe even 730mm after I ride it more.

Fitted with everything including a bell (but no bike computer), the bike is a smidge over 26 pounds. While I wasn’t focused on weight with this build, I did pay attention as this level of bike implies it’ll be fairly light, and this impresses me. While it’s obstensibly an XC bike, and my previous (the LES) was under 21 pounds, this is far more capable: 120mm / 105mm of travel, dw-link suspension, 51t cassette, dropper, etc. Not long ago this would have been called a trail bike, and I think I’d ride it on anything that I personally am willing to do.

My first ride was at Stony Creek and thus far I’m incredibly happy. The redeveloped trails here have everything from lumpy rocks to smooth trails, small drops and wood features to semi-steep rock rolls, perfect for a bike shakedown and demo. The Mach 4 SL felt amazingly fast and comfortable on everything without really trying; just simply composed. It handles the tight/twisty stuff the way I was looking for, yet still feels really good on technical features and small drops. It’s clearly not as burly and squishy as the Trail 429, but that’s the point.

Pedaling firms up the rear end while still absorbing little bumps and keeping the tire in contact with the ground. Rolling over rough spots or dropping off things just feels right. The factory tire choice of a Rekon in the front and Rekon Race in the rear is a good one, as it both rolls nicely yet still has plenty of traction to handle aggressive steering. I also think a 34t ring coupled with the 10-51 cassette will be right. (On the LES I had a 34t, but with the 46t cassette it was a bit too tall for longer climbs. This should be much better.)

I have a bit more suspension setup to do, as in the factory-recommended settings the fork’s damper is a bit noisy and feeling not-quite-right, but dialing that in will just take a bit of time. I may toss the ShockWiz on there as I typically do to try and dial things in further. But, one thing at a time.

Initial build details are as follows:

Frame: Pivot Mach 4 SL v3 (Large, Seafoam Green)
Fork: Fox 34 Factory Step-Cast GRIP SL (2025, 34, K, FLOAT SC, 29in, F-S SC, 120, Grip SL, 3Pos-Adj, Matte Blk, No Logo, Kabolt 110, BLK, 1.5 T, 44mm Rake, N/M OE – Part: 910-31-870)
Fork Axle: Fox Kabolt
Rear Shock: Fox Float Factory (2025_24, FLOAT, F-S, K, 2pos-Adj, Evol LV, Pivot, Mach 4 SL MD-XL, 190, 45, 0.5 Spacer, CM, RM, CMM, No Logo, OE – Part: 972-05-949)
Headset: Pivot Integrated Race Headset
Crankset: Shimano XT FC-M8100-1
Crank Arm Protectors: PRO Crank Protector (PRAC0144)
Bottom Bracket: Shimano BB-MT800-PA
Chainring: Shimano SLX SM-CRM75 (34t)
Chain: Shimano CN-M8100
Derailleur: Shimano XTR RD-M9100-SGS
Shifter: Shimano XT SL-M8100-IR
Shift Cables / Housing: Jagwire / Shimano OE
Cassette: Shimano XT CS-M8100-12 (10-51)
Brakes Calipers: Shimano XT BR-M8100
Brake Levers: Shimano XT BL-M8100
Brake Pads: Shimano J04C-MF (Metal w/ Fin)
Brake Rotors: Shimano RT-MT800-S (160mm)
Stem: Pivot OE Aluminum (60mm x -6°)
Bar: Pivot OE Carbon (Diameter 35mm, Width 760mm, Rise 6mm, Sweep 9° – Cut to 750mm)
Wheels: Reynolds Blacklabel 309/289 XC
Tires: Front: Maxxis Rekon 29 x 2.4WT 3C/EXO/TR (TB00017500), Rear: Maxxis Rekon Race 29 x 2.40WT EXO/TR (TB00211100)
Seatpost: Fox Transfer (31.6mm x 150mm, Original Version)
Dropper Lever: Fox Transfer Post Lever (I-SPEC EV Mount)
Seatpost Collar: Pivot OE
Saddle: Specialized Power Expert (143mm)
Pedals: Shimano XTR PD-M9100
Grips: ESI Extra Chunky (Black)
Bar End Plugs: Generic Aluminum BMX-Type (Black)
Bottle Cages:Specialized Zee Cage II (Black Gloss, 1x Left)
Computer: Garmin Edge 840
Speed/Cadence Sensors: Garmin Bike Speed and Cadence Sensor
Computer Mount: Best Tek Garmin Stem Mount, Stem Mount for Garmin Computer, Adjustable Black
Bell: ROCKBROS Bike Classic Bicycle Bell (Black)
Derailleur Hanger: SRAM Universal Derailleur Hanger
Frame Protection Tape: McMaster-Carr UHMW PE

Comments closed

Fork-Mount Bike Rack for Honda Odyssey (2018+)

Recently I purchased a Honda Odyssey (2024 EX-L) to replace my aging Subaru Outback and get something a bit better for longer trips. Specifically, I wanted to be able to easily put two (or more) bikes inside, along with dogs and luggage. During winter we’d often drive to trails separately because that was the easiest way to keep both of our bikes clean on trips and this was irritating.

To securely hold the bikes inside I put together an adjustable, expandable rail system that holds bikes by their front through axles and is easy to adjust based on bike type, carrying needs, etc. The rail system is strapped to the rear seats as they sit folded into the floor, which provides solid mounting and easy access through the rear door. Combined with the adjustable, and outright removable, second row seats this works nicely for every bike in the house.

The main, base part of the rack is a 1.5″ x 6″ aluminum extrusion which has four slots on the larger faces. These slots are fitted with drop-in T-nuts to which the fork mounts can be fastened. To support easily repositioning the fork mounts I keep T-nuts in the unused slots, and chose ones with spring ball retention, which keeps them from rattling or sliding around while driving. While this style can be inserted or removed without removing the end caps, I keep spare ones in place because depending on the type of bike being fitted it is sometimes necessary to adjust the mount rotation or move them between slots.

Each end of the extrusion is capped with plastic face plates, and eyelets in slots on the underside are used with ratchet straps to hold the rail to the folded rear seats. A scrap of neoprene was stuck to the underside of the rail with small pieces of 3M VHB tape to help keep it from siding, and plastic corner protectors are used to keep the straps from digging into the seats.

Rocky Mounts DropTop mounts hold the bikes themselves to the rail, and the underside of each mount was covered with UHMW polyethylene tape to make side-to-side adjustment of the mounts smooth and avoid scratching the aluminum. The M6 bolts which came with the mounts were used to attach them to the T-nuts, but they are a bit long and bottomed out on the inside of the rail, so some nylon spacers are used beneath the heads of the nuts. I may eventually get some shorter bolts and avoid the spacers, but I really like the Torx head bolts that came from Rocky Mounts and I’m in no hurry to replace them. By varying the slot used the mounts can be angled at 0°, ~20°, or ~44° and can move forward or backward up to 4.5″. Coupled with easy side-to-side adjustment this makes staggering handlebars and fitting long mountain bike bars easy.

Finally, to hold the front wheels while they are off the bikes, IKEA DIMPA bags are working well. These aren’t always necessary, but with studded or potentially dirty tires and potentially setting them on other luggage, I like being able to drop the wheels into a bag before putting them in the car.

Here’s the specific parts used:

Aluminum Extrusion: TNUTZ EX-1560L-BLACK – 1.5″ x 6″ Smooth BLACK Lite T-Slotted Aluminum Extrusion (48″)
T-Nuts: TNUTZ (DB-015) 15 / 40 Series Drop-In T-Nut w/spring-ball
Eyelets: TNUTZ PULL-RING – Steel Pull Ring – M8 x 12mm
End Plates: TNUTZ 15 SERIES – BLACK PLASTIC END CAP – BLANK
Neoprene: ~5mm scrap piece from The Foam Factory
UHMW PE Tape: McMaster-Carr 76445A764
Ratchet Straps: Husky 12 ft. x 1 in. Ratchet Tie-Down Straps with S-Hook (4-Pack)
3M VHB Tape: 4910 (Spare from the Under Cabinet Lighting project.)
Nylon Spacers: McMaster-Carr 90176A155
Plastic Corner Guards: LTM Concrete CG100-000 (Amazon Link)
Wheel Storage Bags: IKEA DIMPA

Comments closed

_wahoo-fitness-tnp._tcp.local

Wahoo smart trainers support network connectivity (instead of just the traditional Bluetooth or ANT+). Since I don’t have one I’d never bothered looking into how it works, but this morning while troubleshooting something with TrainerRoad running in the background I happened to see an mDNS query for _wahoo-fitness-tnp._tcp.local and realized this is how the smart trainers get discovered on the network.

Neat!

Maybe one day I’ll have a smart trainer that can use the network and I can dig further into how this all works.

Comments closed

Surprise New Bike Day: 2023 Salsa Warbird C GRX 600 1x

It’s been no secret that for years my favorite drop bar bike was my beloved 2019 Salsa Warbird Carbon 105 700. This bike has been with me on some of my most memorable rides, from remote parts of the UP and Canadian wilderness to silly northern LP bike path routes, from single track where it didn’t quite belong to long summertime wanders on dirt roads.

For years, and especially in 2023 after switching it to 1x, I’ve told numerous folks that there’s nothing I’d change on it and no reason to get anything new; it’s simply excellent. But then in late November while cleaning it up for winter I found a bit of a shock: a small starburst crack in the frame at the top tube/seat tube junction and a couple other hairline cracks on the seat tube. As things wear out and everything eventually fails I can’t say I was devastated, but I really was disappointed. I loved riding that bike and did not want to change anything. I even came to really like the white color.

After finding the crack I rode it a couple more times and things seemed fine. I have a long seatpost which extended well below the crack area, and I didn’t feel or hear anything when riding, but like any crack it’s best to be safe. The warranty for a carbon frame is five years, which was coming up, so I sent photos of the crack to the folks over at the venerable Tree Fort Bikes and Salsa to get things rolling. I wasn’t sure if it was problematic, and — honestly — I really didn’t want to replace the frame if it wasn’t needed, but I wanted to ask. I love how my Warbird looks with the white frame and reflective black vinyl that I added, and I wasn’t exactly keen on a matte black replacement, re-running brake lines, etc. And, it rode great!

After just a handful of questions Craig emailed me with a massive surprise: Salsa is replacing my 2019 Warbird (v4) frame with a complete 2023 Warbird C GRX 1x bike, and instead of being a simple black warranty replacement it’s a nice clay-ish grey color! This was better than I could have possibly hoped for, because not only did it replace the problematic frame, it moved me to Shimano’s GRX drivetrain! And I also wouldn’t have to cut and re-run the brake lines, etc.

Back when my Warbird came out GRX wasn’t available, so it came with the (very good) 105 R7000 road groupset. This is an amazingly good drivetrain, but for rougher roads I switched to the Ultegra RD-RX800 derailleur, which was basically a high-end road derailleur with a clutch, originally intended for cyclocross use. Then in late 2022 I used a few Wolf Tooth Components parts and made it a sorta-hacky yet very functional 1x drivetrain because I wanted to get away from the problems inherent with 2x and riding in poor conditions, notably gunking up a front derailleur.

This setup worked great, but I felt a bit limited by maximum cassette size (40t) and my left brifter had a disconnected shift lever, which would rattle around on chattery roads. Minor, I know, and while I was proud of the semi-hacky drivetrain, improvements such as a full GRX drivetrain would have been nice, but I couldn’t justify it when things worked so well. But suddenly now I had it!

Last week I picked up the bike from Tree Fort, and over some unseasonably rainy, cold, and blah afternoons I shuffled parts around and now it’s ready. My new gravel bike, a 2023 Salsa Warbird C GRX 1x with a few upgrades!

Build

Frame / Fork: 2023 Salsa Warbird Carbon / Salsa Waxwing (Light Grey)
Wheelset: Specialized Roval Terra C
Ratchets: DT Swiss HWTXXX00NSK54S (54T)
Tires: Specialized Pathfinder Pro 2Bliss Ready (700×42, Black Sidewall)
Crank: Shimano FC-RX810-1 (42T, 172.5mm)
Bottom Bracket: Shimano SM-BB72-41B
Cassette:
 Shimano CS-M8000 (11-42)
Right Shift/Brake Levers:
Shimano ST-RX600-R
Left Shift/Brake Levers:
Shimano BL-RX600-L
Brake Calipers:
Shimano BR-RX400
Brake Rotors: Shimano SM-RT64 (160mm)
Brake Pads:
Shimano K05S-RX (Resin)
Chain:
Shimano CN-HG601-11
Rear Derailleur:
Shimano RD-RX812
Bar Tape:
MSW HBT-300 Anti-Slip Gel+ (Black)
Handlebar: Salsa Cowbell Deluxe (44cm)
Headset: Cane Creek Hellbender 70 (IS41/28.6/H9 | IS52/40)
Stem: Thomson Elite X4 (SM-E139 10° X 100mm X 31.8 1-1/8 X4 Black)
Spacers: Generic Aluminum
Stem Cap: MASH Donut 2.0
Seatpost: Thomson Elite (SP-E113SB 27.2 X 410 Setback, Black)
Seatpost Clamp: Salsa Lip Lock
Saddle: Specialized Power Expert (143mm, Black)
Pedals: Shimano PD-M8100
Bottle Cages: Specialized Zee Cage II (2x Left, 2x Right)
Bottle Cage Screws: McMaster-Carr 94500A233 (316 Stainless, M5 x 0.8mm, 20mm)
Front Light: Outbound Lighting Detour
Rear Light: Garmin Varia RTL515
Rear Light Mount: Garmin Varia Seat-post Quarter Turn Mount
Bell: RockBros Bell (Black)
Computer: Garmin Edge 840
Computer Mount: SRAM Quickview Computer Mount
Sensors: Garmin Bike Speed Sensor (Front Wheel), Garmin Cadence Sensor 2 (Crank)
Anti-Rub Tape: McMaster-Carr 76445A764 (Low-Friction UHMW Tape, 0.0115″ Thick, 2″ Wide)
Mounting Hole Plugs: Heyco 2590
Top Tube Bag: Revelate Designs Mag-Tank Bolt-On
Saddle Bag: Lezyne Road Caddy
Frame Pump: Lezyne Sport Drive HP
Derailleur Hanger: 465 / QBP FS2322

Weight

Total weight for the bike, with everything but bottles (including lights, pump, saddle bag+tools, and computer), is 22.54 pounds. Removing the computer/lights/saddle bag/pump brings it down to 20.78 pounds, so I expect that without pedals, cages, or mounts (the usual way of weighing a bike) it’d be in the 19-pound range.

Build Choices:

Crank/Cassette Upgrade: After moving my previous Warbird to 1x a year ago I realized that I like having a 42t front ring. Since the bike came with a 40t ring I wanted to upgrade that, but it turned out that I could get a complete FC-RX810 crankset with a 42t ring for not much more than a stand-alone ring. Swapping from the stock FC-RX610 swap saved 84g while increasing the chainring size, makes mounting a cadence sensor easier, and opens up the possibility of getting a power meter on the bike.

At the same time I ordered an CS-M8000 cassette to replace the stock CS-M5100, which saved another 114g. While I originally was going to get an 11-40 to match my previous Warbird, my friend Ray convinced me that a 42, ending up with an even 1:1 in the lowest gear would be good, and I agreed. Between the two sizes the seven lowest cogs are the same, so typical flat/rolling stuff would feel the same with either, but when I do need a climbing/trail gear it’ll be there.

Chain Drop Protection: I was originally going to fit some chain drop protection, like the Wolf Tooth LoneWolf, but after thinking about how many times I’ve dropped a chain in the past, I opted against it. Mounting this would also require fitting a front derailleur mount which makes bottle cage mounting more fiddly and makes the bike harder to clean. I may still fit this later on, but for now I’m content continuing without.

Rotors: I am generally very fond of Shimano rotors with solid aluminum center carriers as they seem to be harder to bend and have an aluminum core (Ice Technologies) to help with heat dissipation. The bike came with some SM-RT64, and while they are a bit heavier per-rotor (~25g) than others, and just steel, it would have cost a fair bit (~$100) to replace them. I have similar rotors on my fatbike and they’ve been working well, so for now I’m going to stick with these rotors and see how it goes. They can always be upgraded later.

Frame Pump/Saddle Bag: On the previous Warbird I used a somewhat large Specialized saddle bag with a tiny 4″ pump tucked inside next to the tube. This worked well, but I began having problems with the pack Velcro no longer holding, so I also had a releasable cable tie holding it to the saddle.

I’d also never needed — that is tested — the tiny pump in the field, so out of an abundance of caution (and some paranoia) I’d often tuck a second, larger pump in my jersey pocket for long rides. This other pump had been used a few times, so with the bike swap I’ve moved to mounting the beloved (and cheap) Lezyne Sport Drive HP to the frame behind the seat tube bottle cage. I’m wary of road spray causing problems with the pump, but if it does I’ll just start carrying it in my pocket.

By no longer needing room for a pump in the bag I was able to swap to the Lezyne Road Caddy, a small and elegant seat bag that I’ve had on my road bike for a couple years.

Bike Fit: This and my road bike, a custom built Salsa Warroad, are very very similar in geometry, but I’ve had it set up with the bars slightly lower than on the Warbird. Using my favorite stem comparison tool I found that by removing 10mm of spacers below the stem I can get the bar clamp to a nearly identical position on both bikes, so as a bit of an experiment I’m giving this a go, leaving the steerer tube uncut so I can go back if desired.

I’m slightly concerned about the fit when riding more technical trails, and I may have a harder time keeping my forearms near level while on rough surface, but it’s plenty easy to go back if needed.

Bottle Cage Screws: When using Specialized Zee Cages it’s important to have a low profile screw head, else they’ll rub on the bottle and make it hard to insert. The screws which come with the cages are a nice shape, but are a chromed steel that seems to corrode with sweat, sports drink, and road treatment chloride, so I prefer something else. I prefer something like 316 stainless, and I had some 20mm of these laying around from a previous project. For just-bottle-cages this is longer than the needed ~15mm, but the additional mass is across the three standard cages is only 6x 1/4 of the mass of a single screw (1.5x a single screw), or ~5g. It wasn’t worth spending $11+shipping to save that little mass.

Anti-Rub Tape on Head Tube: On my previous Warbird, and on the Warroad, I shortened the front brake hose so it’d take a clean path from the fork to the bar, not touching the head tube. This works, but also gets it the way of the light mount, and makes adjusting spacers difficult because I have to remove the bar from the stem to slide things upward.

The stock hose length on this model rubs the front of the head tube, but I’m not sure I want to shorten it yet. For now I simply put a strip of UHMW PE tape along the front of the head tube, below the Salsa logo, so the hose won’t rub on the frame/paint/carbon. Once I settle on spacers and work a bit more on accessory mounting I may shorten the hose, or I may just leave this alone.

Comments closed

Garmin Edge 530 WiFi Connection Weirdness

Today I tried to connect my Garmin Edge 530 running the latest firmware (v9.73) to my home wireless network, and couldn’t get it working. my friend Nick dug up a solution, so I wanted to share it here.

The problem I had is that when trying to find the network to join, either in the Garmin Connect mobile app or right on the device, my WPA2-secured wireless network would be shown as Unsecured and I couldn’t join it. No matter what I tried, on device or in app, switching around network types, names, security, or bands, the Edge 530 always saw it as Unsecured. The one thing I didn’t try was making a non-secured network, but that’s not an option for me.

Turns out you can work around this by using the Garmin Express desktop app then going into the 530, Tools & Content, Utilities, then under Wi-Fi Networks manually adding the network with appropriate security, password, etc.

After saving settings and ejecting the device it joined my wireless network, as confirmed on the device, in the DHCP leases, and on the APs themselves. Now it’ll automatically sync rides whenever I get back home.

Something else odd is the Edge 530 truncates 32-character SSIDs. My network at home is Smart Meter Surveillance Network, which is 32 ASCII characters long. This is the maximum allowed by 802.11, which is 32 octets, or 32 sets of 8 bytes, or 32 ASCII characters. For some reason in much of the Garmin UI it’d drop the last character, truncating to Smart Meter Survellance Networ. Thinking this was the problem I first dug into network name as a problem but eventually found a shorter SSID didn’t help. Also, this isn’t the first device I’ve had with SSID length problems (see Bypassing Reolink SSID Length Limitation); thankfully in this case it only seemed to be a display issue.

Comments closed

1x’ing my Salsa Warbird for 2023

Every since getting one of the v4 models back in late 2018, the Salsa Warbird has been one of my absolute favorite bikes. I’ve ridden on all surfaces, and it’s been great, with only one recurring problem: front shifting.

These days bikes ridden anywhere but pavement are almost exclusively rear-shifting-only (1x) — without a front derailleur — and for good reason. Unfortunately, when I bought my Warbird there weren’t many (any?) 1x groups for drop bar use; Shimano hadn’t even announced their excellent gravel-focused GRX group. So, my bike came with the best bang-for-the-buck drivetrain at the time, Shimano 105 R7000. This remains an excellent groupset, and I put it on my new road bike, but a couple things about it were a bit lacking for off-pavement use: lack of a clutch derailleur to keep the chain taut when things got rough, and the front derailleur.

Early on I switched the rear derailleur to a clutched Ultegra RX (RD-RX800-GS), which was basically a preview of GRX, and worked wonderfully. It dropped right in place on the bike and Just Worked to solve chain slap. But, I still had one more problem… The front derailleur.

Salsa Warbird v4 Front Derailleur Cable Route

Located where the rear wheel flings debris, front derailleurs are quite prone to getting gunked up while riding, and (unfortunately) the Warbird exacerbates this by having the shift cable exit the frame at the bottom bracket, behind the seat tube, facing upward. This location collects whatever flings off the tire and is a very hard place to seal a moving cable. Coupled with our gritty, chloride-treated dirt roads, the result has been shift cables and housing corroding and binding far before any other drivetrain parts wear.

This corrosion leads to extra drag on the shift cable needed to shift, up until things bind firmly, after which the sacrificial Main Lever Support L (part number Y63X80010) in the shifter to breaks (exploded view). The overall design of this sacrificial part is great; a removable and cheap plastic bushing on the shift/brake lever blade that presses against the metal piece that handles the shifting. If the cable becomes too tight this $3 piece fails before anything else in the shifter, and replacing it takes seconds. But, the cable and housing also need to be fixed, and COVID-era parts shortages (these supports were unobtainium for about 12 months — I was using 3D printed ones for a while) and it all quickly becomes an irritation.

I’d lived with front shifting quirks for a couple years as most of the time it was fine, but losing the front derailleur was always in the back of my mind. Mountain bikes have this way for years, with a rear cassette that provides all the range needed, and this has become common on new gravel bikes.

After front shifting failed early on in De Ronde van Grampian and I ended up stuck in the big ring, I realized two things: I should get rid of the front derailleur, and I don’t need quite all the range that a 50-34/11-34 2×11 drivetrain offers. I use most of the range, but could lose a little on the top and bottom end of the range and be fine.

The first change was to remove the front derailleur, which was made easy by the front shift housing being split with a barrel adjuster below the handlebar. I was able to pull the cable and remove the housing all the way back to just under the the bar, leaving 2″ stub of housing unobtrusively peeking out of the bar tape. Next time I rewrap the bars I’ll remove this, but for now it’s fine.

Then to finish the conversion I fitted a Wolf Tooth 42t chainring specifically designed with an offset designed for 1x. None of the single-ring chainring bolts that I had around the house fit right, so I grabbed some of Wolftooth’s matching chainring bolts and it was all set. The ring fits the crank perfectly, worked great with the original chain length, and the I could shift across the whole of the cassette without any rear adjustment.

I did two rides on local rolling dirt roads and except for some longer steep climbs things were good. I was feeling good for both rides, so I didn’t mind having to grind out the longer climbs in sub-optimal cadence, but I realized I might need some more range on longer days. I’d also been concerned the left brifter would be flappy and noisy without a shift cable connected, but it’s just the same as before.

Next up was getting more gear range…

Gear Ratios for 105 R7000 50/34 11-34, 42×11-34, and 42×11-40.

The original Shimano 105 R7000 drivetrain, with 50/34 chainrings and an 11-34 cassette, gave a range from 455% to 100%, plenty for all my riding, but with a whole bunch of overlap. While I’d use the lowest ratio gears somewhat frequently, I’d almost never use the highest gear because at typical cadence I’d be moving well above 33 MPH. At those speeds I’m probably coasting down a hill and no longer pedaling.

After changing to a single 42t chainring the available ratios were 382% to 124%. At the high end this is nearly identical to everything but the rarely-used smallest cog, but at the low end it was like I lost the easiest two gears. On a couple test local couple-hour rides I didn’t absolutely need them, but it did require a bit more effort on some of the harder climbs.

With 11-speed mountain bike drivetrains on the decline, I came across Shimano XT 11-40 cassettes on sale and decided to try a bigger cassette on the rear of the bike. I was still on the original cassette and it was nearly worn out, so a change was due. This required a 1.85mm spacer to make the MTB cassette fit on a road freehub, which moved the cogs outboard, but a few limit adjustments and all was good. Now with a range of 382% to 105% it was almost identical to what I’d use on the original 2x setup.

Ultegra RX derailleur and 11-40 Cassette

The larger cassette fit pretty well, but caused some small quirks in spacing with the upper jockey wheel: the B-tension screw had to be cranked in almost all the way to have the gap set properly on biggest cog. It was quite a fiddly adjustment, as a quarter turn too far one way would have the jockey wheel rubbing on the cassette and a quarter turn the other would make shifting slow. This much B-tension also unwrapped the chain from the cassette a fair bit, making me concerned that with less chain on the cassette while pedaling the chain and cassette would wear faster than normal.

At this point I did a test ride and everything worked great when riding. Between the new chain (old was at 0.5%), cassette, and chainring the drivetrain was silent and I didn’t have a bit of trouble, but I still wanted it to be better.

A few days earlier I’d ordered a Wolftooth RoadLink DM, a nifty part that replaces a link in rear derailleurs like mine, repositioning it to handle larger cassettes. This is advertised to improve chainwrap and shifting performance, and immediately after installation the benefits were apparent. On the biggest cog chainwrap is much better, the derailleur no longer looks over-extended, the B-screw doesn’t need to be turned all the way in, and shifting feels more spot on.

Ultegra RX w/ RoadLink DM and 11-40 Cassette

While I could have fitted a Shimano GRX RD-RX812 derailleur instead of using the RoadLink DM on the Ultegra RX, this would have cost $90 more than the RoadLink DM, and I’m not sure it’d be any better.

All done, total cost for this was $265.03 after tax, and with a new cassette, chain, and chainring, I’ve now basically got a new drivetrain.

Wolf Tooth Chainring: $84.95
Wolf Tooth Chainring Bolts: $26.45
Shimano XT Cassette: $95.39
Shimano SLX/105 Chain: $26.49
Wolf Tooth RoadLink DM: $31.75

I’m quite happy with how this all turned out. A problem is solved, worn out things were upgraded, functional parts were kept, and it works great. My Warbird is ready for another year of gravel fun.

Comments closed

Soma Smoothie HP: Brake Safety Issue

Shift cable/brake interference on prototype Soma Smoothie HP Frame (Photo from Soma)

Originally this post was going to be about my new road bike, but instead I’m writing a warning about the new Soma Smoothie HP and a safety issue, recommending against buying it without fully understanding the possible downsides. While the specs of this frame promise to be an excellent modern steel road bike, it has a design problem that can lead to rear brake failure.

Specifically, the location of the brake housing mounts results in the front derailleur cable resting on the brake cable at a mount. Over time movement of this cable can cut into the brake hose/housing, cable clip/tie, etc. If not caught in time this can lead to brake failure.

I purchased one of these frames and have been excitedly building it up, finding this problem late into the build when preparing to run the shift cables and brake lines.

When I brought this up with Soma seeking for a solution, they dismissed the issue, saying they identified this interference during frame development, but that it’s not concerning to them. Stan, with Soma, instead suggested that I rely on the cable tie (as seen above) to mitigate the rub, that rubbing through a brake hose or housing will take a long time, and to add additional material (rubber cable donuts or tape) to the cable if I am worried about it.

I disagree, as any component that’s designed to move should not have unintentional rub, particularly not against a safety-critical system like a brake. A frame should be designed to avoid this; it should not be necessary to bodge in rub protection to stave off cables cutting into other housing.

The photo at the top of this post is of Soma’s prototype build and shows the interference and their reliance on the head of a cable tie for keeping the shift cable in place and away from the brake line. Beyond the safety issue of the front shift cable rubbing on the brake line, the cable does not have a clean path between the upper stop and lower guide, which can lead to shifting issues.

While it would be possible to build this frame up as a 1x (no front derailleur) system to avoid this interference, I want this to be a double-chainring road bike (Shimano 105 R7000) and thus is not an option for me. Or one could go with wireless shifting, but due to cost this isn’t an option for me either.

I really wish Soma had fixed this interference when they first identified it, or at least mentioned it in their documentation so I would have passed on buying the frame. All it would have taken is moving the brake routing to either the centerline (like on this Lynskey) or much further up the downtube (like on my Salsa Vaya) and it’d have been solved.

After I found this a good friend reached out to me, and I’ve since passed the frame on to him. He was looking to build an wireless shifting road bike with fenders, and this will work out perfectly for him. With the electronic shifting he won’t run into this cabling issue.

For those considering this frame, unless you are going with wireless shifting, a 1x setup, or are willing to deal with the compromises of a shift cable rubbing on a brake housing/hose, I suggest that you look elsewhere.

EDIT on 2024-Feb-20: This evening I received email from Stanley at Soma Fabrications about updates to the Smoothie HP frame. It sounds like this will alleviate the concern I mention, so I’m sharing it here:

I just want to update you that early 2023 we replaced the plastic BB mounted cable guide on all our HP frames with one of those guides with two mounting holes (similar to Shimano SP18) which moves the derailleur wire just enough to avoid any contact with the zip tie or brake housing. 

Though we maintain the opinion the possibility of the front derailleur wire cutting thru both the zip tie and housing in real world use is extremely remote with the old set-up, we chose to improve the routing. 

The new production that arrived this month moves the brake guides to the 6 o’clock area which will probably avoid contact no matter what plastic guide is used on the BB.

Stanley Pun, Soma Fabrications, via email on February 20, 2024

Here (PDF) is the full email thread with Soma.

Below are photos showing the interference on my frame. These were taken when the build was nearly complete, while I was planning cable routing. These photos are when I first realized the problem and reached out to Soma.

Comments closed

Help Please: 2022 AIDS/LifeCycle Fundraising

Years ago Mark Ferlatte told me about the AIDS/LifeCycle (Wikipedia) charity ride from San Francisco to Los Angeles to raise money for the San Francisco AIDS Foundation and the Los Angeles LGBT Center. Money raised by this event allows the two non-profits to provide free HIV/AIDS medical care, testing, and prevention services. Each rider in the event raises at least $3000, with the event raising over $220,000,000 since it began in 1993.

At 545 miles over seven days, riding everywhere from the Pacific Coast Highway to proper California mountains, this sounded like it a wonderfully fun way to see a new part of the country, really enjoy being outside, and most importantly raise money to directly help save lives. But, it always seemed like such a logistical challenge that fell into the back of my mind as a one-day-in-the-future goal.

Well, here we are, and 2022 is the year!

This year Kristen and I are both signed up for the 2022 AIDS/LifeCycle ride! On June 5th we will set out from Cow Palace in San Francisco to spend the next week pedaling through one of the most beautiful parts of the country with a couple thousand other folks, all of us with one goal: helping those with HIV/AIDS.

This is where we need your help. Specifically, we need money.

Kristen and I each are working to raise least $3000 through donations from people like you. We all give money to trails, trail organizations, and other groups which help make our lives more fun and enjoyable. Please join us in also giving a bit more to save lives, so everyone can have a great life.

Please click one of these links to donate: SteveKristen

(Donations are to a non-profit, and thus tax deductible.)

Thank you for your help, and for making the lives of those with HIV/AIDS better!

Comments closed